Part Number Hot Search : 
5SMC75A 21UHR ICS85301 SMS6GE5 BTS412B PM8312 65C10 MP6KE22A
Product Description
Full Text Search
 

To Download ADG1604BRUZ Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 typical on resistance, 5 v, +12 v, +5 v, and +3.3 v, 4:1 multiplexer adg1604 rev. a information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective owners. one technology way, p.o. box 9106, norwood, ma 02062-9106, u.s.a. tel: 781.329.4700 www.analog.com fax: 781.461.3113 ?2009 analog devices, inc. all rights reserved. features 1 typical on resistance 0.2 on resistance flatness 3.3 v to 8 v dual-supply operation 3.3 v to 16 v single-supply operation no v l supply required 3 v logic-compatible inputs rail-to-rail operation continuous current per channel lfcsp package: 504 ma tssop package: 315 ma 14-lead tssop and 16-lead, 4 mm 4 mm lfcsp applications communication systems medical systems audio signal routing video signal routing automatic test equipment data acquisition systems battery-powered systems sample-and-hold systems relay replacements functional block diagram adg1604 s2 s1 d s4 s3 en a1 a0 1 of 4 decoder 07982-001 figure 1. general description the adg1604 is a complementary metal-oxide semiconductor (cmos) analog multiplexer and switches one of four inputs to a common output, d, as determined by the 3-bit binary address lines, a0, a1, and en. logic 0 on the en pin disables the device. each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. in the off condition, signal levels up to the supplies are blocked. all switches exhibit break-before-make switching action. inherent in the design is low charge injection for minimum transients when switching the digital inputs. the ultralow on resistance of these switches make them ideal solutions for data acquisition and gain switching applications where low on resistance and distortion is critical. the on resistance profile is very flat over the full analog input range, ensuring excellent linearity and low distortion when switching audio signals. the cmos construction ensures ultralow power dissipation, making the parts ideally suited for portable and battery- powered instruments. product highlights 1. 1.6 maximum on resistance over temperature. 2. minimum distortion: thd + n = 0.007%. 3. 3 v logic-compatible digital inputs: v inh = 2.0 v, v inl = 0.8 v. 4. no v l logic power supply required. 5. ultralow power dissipation: <16 nw. 6. 14-lead tssop and 16-lead, 4 mm 4 mm lfcsp.
adg1604 rev. a | page 2 of 20 table of contents features .............................................................................................. 1 ? applications ....................................................................................... 1 ? functional block diagram .............................................................. 1 ? general description ......................................................................... 1 ? product highlights ........................................................................... 1 ? revision history ............................................................................... 2 ? specifications ..................................................................................... 3 ? 5 v dual supply ......................................................................... 3 ? 12 v single supply ........................................................................ 4 ? 5 v single supply .......................................................................... 5 ? 3.3 v single supply ....................................................................... 6 ? continuous current per channel, s or d ..................................7 ? absolute maximum ratings ............................................................8 ? esd caution...................................................................................8 ? pin configurations and function descriptions ............................9 ? typical performance characteristics ........................................... 10 ? test circuits ..................................................................................... 13 ? terminology .................................................................................... 16 ? outline dimensions ....................................................................... 17 ? ordering guide .......................................................................... 17 ? revision history 9/09rev. 0 to rev. a changes to on resistance (r on ) parameter, on resistance match between channels (r on ) parameter, and on resistance flatness (r flaton ) parameter, table 4 ............................................. 6 1/09revision 0: initial version
adg1604 rev. a | page 3 of 20 specifications 5 v dual supply v dd = +5 v 10%, v ss = ?5 v 10%, gnd = 0 v, unless otherwise noted. table 1. parameter 25c ?40c to +85c ?40c to +125c unit test conditions/comments analog switch analog signal range v dd to v ss v on resistance (r on ) 1 typ v s = 4.5 v, i s = ?10 ma; see figure 22 1.2 1.4 1.6 max v dd = 4.5 v, v ss = 4.5 v on resistance match between channels (?r on ) 0.04 typ v s = 4.5 v, i s = ?10 ma 0.08 0.09 0.1 max on resistance flatness (r flat(on) ) 0.2 typ v s = 4.5 v, i s = ?10 ma 0.25 0.29 0.34 max leakage currents v dd = +5.5 v, v ss = ?5.5 v source off leakage, i s (off ) 0.1 na typ v s = 4.5 v, v d = ? 4.5 v; see figure 23 0.2 1 8 na max drain off leakage, i d (off ) 0.1 na typ v s = 4.5v, v d = ? 4.5 v; see figure 23 0.2 2 16 na max channel on leakage, i d , i s (on) 0.2 na typ v s = v d = 4.5 v; see figure 24 0.4 2 16 na max digital inputs input high voltage, v inh 2.0 v min input low voltage, v inl 0.8 v max input current, i inl or i inh 0.005 a typ v in = v gnd or v dd 0.1 a max digital input capacitance, c in 8 pf typ dynamic characteristics 1 transition time, t transition 150 ns typ r l = 300 , c l = 35 pf 278 336 376 ns max v s = 2.5 v; see figure 29 t on (en) 116 ns typ r l = 300 , c l = 35 pf 146 166 177 ns max v s = 2.5 v; see figure 31 t off (en) 186 ns typ r l = 300 , c l = 35 pf 234 277 310 ns max v s = 2.5 v; see figure 31 break-before-make time delay, t d 50 ns typ r l = 300 , c l = 35 pf 28.5 ns min v s1 = v s2 = 2.5 v; see figure 30 charge injection 140 pc typ v s = 0 v, r s = 0 , c l = 1 nf; see figure 32 off isolation 70 db typ r l = 50 , c l = 5 pf, f = 1 mhz; see figure 25 channel-to-channel crosstalk 70 db typ r l = 50 , c l = 5 pf, f = 1 mhz; see figure 27 total harmonic distortion + noise (thd + n) 0.007 % typ r l = 110 , 5 v p-p, f = 20 hz to 20 khz; see figure 28 ?3 db bandwidth 15 mhz typ r l = 50 , c l = 5 pf; see figure 26 c s (off ) 63 pf typ v s = 0 v, f = 1 mhz c d (off ) 270 pf typ v s = 0 v, f = 1 mhz c d , c s (on) 360 pf typ v s = 0 v, f = 1 mhz power requirements v dd = +5.5 v, v ss = ?5.5 v i dd 0.001 a typ digital inputs = 0 v or v dd 1.0 a max v dd /v ss 3.3/8 v min/max 1 guaranteed by design, not subject to production test.
adg1604 rev. a | page 4 of 20 12 v single supply v dd = 12 v 10%, v ss = 0 v, gnd = 0 v, unless otherwise noted. table 2. parameter 25c ?40c to +85c ?40c to +125c unit test conditions/comments analog switch analog signal range 0 v to v dd v on resistance (r on ) 0.95 typ v s = 0 v to 10 v, i s = ?10 ma; see figure 22 1.1 1.25 1.45 max v dd = 10.8 v, v ss = 0 v on resistance match between channels (?r on ) 0.03 typ v s = 10 v, i s = ?10 ma 0.06 0.07 0.08 max on resistance flatness (r flat(on) ) 0.2 typ v s = 0 v to 10 v, i s = ?10 ma 0.23 0.27 0.32 max leakage currents v dd = 13.2 v, v ss = 0 v source off leakage, i s (off ) 0.1 na typ v s = 1 v/10 v, v d = 10 v/1 v; see figure 23 0.2 1 8 na max drain off leakage, i d (off ) 0.1 na typ v s = 1 v/10 v, v d = 10 v/1 v; see figure 23 0.2 2 16 na max channel on leakage, i d , i s (on) 0.2 na typ v s = v d = 1 v or 10 v; see figure 24 0.4 2 16 na max digital inputs input high voltage, v inh 2.0 v min input low voltage, v inl 0.8 v max input current, i inl or i inh 0.001 a typ v in = v gnd or v dd 0.1 a max digital input capacitance, c in 8 pf typ dynamic characteristics 1 transition time, t transition 100 ns typ r l = 300 , c l = 35 pf 161 192 220 ns max v s = 8 v; see figure 29 t on (en) 80 ns typ r l = 300 , c l = 35 pf 95 104 111 ns max v s = 8 v; see figure 31 t off (en) 144 ns typ r l = 300 , c l = 35 pf 173 205 234 ns max v s = 8 v; see figure 31 break-before-make time delay, t d 25 ns typ r l = 300 , c l = 35 pf 18 ns min v s1 = v s2 = 8 v; see figure 30 charge injection 125 pc typ v s = 6 v, r s = 0 , c l = 1 nf; see figure 32 off isolation 70 db typ r l = 50 , c l = 5 pf, f = 1 mhz; see figure 25 channel-to-channel crosstalk 70 db typ r l = 50 , c l = 5 pf, f = 1 mhz; see figure 27 total harmonic distortion + noise 0.013 % typ r l = 110 , 5 v p-p, f = 20 hz to 20 khz; see figure 28 ?3 db bandwidth 19 mhz typ r l = 50 , c l = 5 pf; see figure 26 c s (off ) 60 pf typ v s = 6 v, f = 1 mhz c d (off ) 270 pf typ v s = 6 v, f = 1 mhz c d , c s (on) 350 pf typ v s = 6 v, f = 1 mhz power requirements v dd = 12 v i dd 0.001 a typ digital inputs = 0 v or v dd 1 a max i dd 230 a typ digital inputs = 5 v 360 a max v dd 3.3/16 v min/max 1 guaranteed by design, not subject to production test.
adg1604 rev. a | page 5 of 20 5 v single supply v dd = 5 v 10%, v ss = 0 v, gnd = 0 v, unless otherwise noted. table 3. parameter 25c ?40c to +85c ?40c to +125c unit test conditions/comments analog switch analog signal range 0 v to v dd v on resistance (r on ) 1.7 typ v s = 0 v to 4.5 v, i s = ?10 ma; see figure 22 2.15 2.4 2.7 max v dd = 4.5 v, v ss = 0 v on resistance match between channels (?r on ) 0.05 typ v s = 0 v to 4.5 v, i s = ?10 ma 0.09 0.12 0.15 max on resistance flatness (r flat(on) ) 0.4 typ v s = 0 v to 4.5 v, i s = ?10 ma 0.53 0.55 0.6 max leakage currents v dd = 5.5 v, v ss = 0 v source off leakage, i s (off ) 0.05 na typ v s = 1 v/4.5 v, v d = 4.5 v/1 v; see figure 23 0.2 1 8 na max drain off leakage, i d (off ) 0.05 na typ v s = 1 v/4.5 v, v d = 4.5 v/1 v; see figure 23 0.2 2 16 na max channel on leakage, i d , i s (on) 0.1 na typ v s = v d = 1 v or 4.5 v; see figure 24 0.4 2 16 na max digital inputs input high voltage, v inh 2.0 v min input low voltage, v inl 0.8 v max input current, i inl or i inh 0.001 a typ v in = v gnd or v dd 0.1 a max digital input capacitance, c in 8 pf typ dynamic characteristics 1 transition time, t transition 175 ns typ r l = 300 , c l = 35 pf 283 337 380 ns max v s = 2.5 v; see figure 29 t on (en) 135 ns typ r l = 300 , c l = 35 pf 174 194 212 ns max v s = 2.5 v; see figure 31 t off (en) 228 ns typ r l = 300 , c l = 35 pf 288 342 385 ns max v s = 2.5 v; see figure 31 break-before-make time delay, t d 30 ns typ r l = 300 , c l = 35 pf 21 ns min v s1 = v s2 = 2.5 v; see figure 30 charge injection 70 pc typ v s = 2.5 v, r s = 0 , c l = 1 nf; see figure 32 off isolation 70 db typ r l = 50 , c l = 5 pf, f = 100 khz; see figure 25 channel-to-channel crosstalk 70 db typ r l = 50 , c l = 5 pf, f = 100 khz; see figure 27 total harmonic distortion + noise 0.09 % typ r l = 110 , f = 20 hz to 20 khz, v s = 3.5 v p-p; see figure 28 ?3 db bandwidth 16 mhz typ r l = 50 , c l = 5 pf; see figure 26 c s (off ) 70 pf typ v s = 2.5 v, f = 1 mhz c d (off ) 300 pf typ v s = 2.5 v, f = 1 mhz c d , c s (on) 400 pf typ v s = 2.5 v, f = 1 mhz power requirements v dd = 5.5 v i dd 0.001 a typ digital inputs = 0 v or v dd 1 a max v dd 3.3/16 v min/max 1 guaranteed by design, not subject to production test.
adg1604 rev. a | page 6 of 20 3.3 v single supply v dd = 3.3 v, v ss = 0 v, gnd = 0 v, unless otherwise noted. table 4. parameter 25c ?40c to +85c ?40c to +125c unit test conditions/comments analog switch analog signal range 0 v to v dd v on resistance (r on ) 3.2 3.4 3.6 typ v s = 0 v to v dd , i s = ?10 ma, v dd = 3.3 v, v ss = 0 v; see figure 22 on resistance match between channels (?r on ) 0.06 0.07 0.08 typ v s = 0 v to v dd , i s = ?10 ma on resistance flatness (r flat(on) ) 1.2 1.3 1.4 typ v s = 0 v to v dd , i s = ?10 ma leakage currents v dd = 3.6 v, v ss = 0 v source off leakage, i s (off ) 0.02 na typ v s = 0.6 v/3 v, v d = 3 v/0.6 v; see figure 23 0.25 1 8 na max drain off leakage, i d (off ) 0.02 na typ v s = 0.6 v/3 v, v d = 3 v/0.6 v; see figure 23 0.25 2 16 na max channel on leakage, i d , i s (on) 0.05 na typ v s = v d = 0.6 v or 3 v; see figure 24 0.6 2 16 na max digital inputs input high voltage, v inh 2.0 v min input low voltage, v inl 0.8 v max input current, i inl or i inh 0.001 a typ v in = v gnd or v dd 0.1 a max digital input capacitance, c in 8 pf typ dynamic characteristics 1 transition time, t transition 280 ns typ r l = 300 , c l = 35 pf 460 526 575 ns max v s = 1.5 v; see figure 29 t on (en) 227 ns typ r l = 300 , c l = 35 pf 308 332 346 ns max v s = 1.5 v; see figure 31 t off (en) 357 ns typ r l = 300 , c l = 35 pf 480 549 601 ns max v s = 1.5 v; see figure 31 break-before-make time delay, t d 25 ns typ r l = 300 , c l = 35 pf 20 ns min v s1 = v s2 = 1.5 v; see figure 30 charge injection 60 pc typ v s = 1.5 v, r s = 0 , c l = 1 nf; see figure 32 off isolation 70 db typ r l = 50 , c l = 5 pf, f = 100 khz; see figure 25 channel-to-channel crosstalk 70 db typ r l = 50 , c l = 5 pf, f = 100 khz; see figure 27 total harmonic distortion + noise 0.15 % typ r l = 110 , f = 20 hz to 20 khz, v s = 2 v p-p; see figure 28 ?3 db bandwidth 15 mhz typ r l = 50 , c l = 5 pf; see figure 26 c s (off ) 76 pf typ v s = 1.5 v, f = 1 mhz c d (off ) 316 pf typ v s = 1.5 v, f = 1 mhz c d , c s (on) 420 pf typ v s = 1.5 v, f = 1 mhz power requirements v dd = 3.6 v i dd 0.001 a typ digital inputs = 0 v or v dd 1.0 1.0 a max v dd 3.3/16 v min/max 1 guaranteed by design, not subject to production test.
adg1604 rev. a | page 7 of 20 continuous current per channel, s or d table 5. parameter 25c 85c 125c unit continuous current, s or d v dd = +5 v, v ss = ?5 v tssop ( ja = 150.4c/w) 315 189 95 ma maximum lfcsp ( ja = 48.7c/w) 504 259 112 ma maximum v dd = 12 v, v ss = 0 v tssop ( ja = 150.4c/w) 378 221 112 ma maximum lfcsp ( ja = 48.7c/w) 627 311 126 ma maximum v dd = 5 v, v ss = 0 v tssop ( ja = 150.4c/w) 249 158 91 ma maximum lfcsp ( ja = 48.7c/w) 403 224 105 ma maximum v dd = 3.3 v, v ss = 0 v tssop ( ja = 150.4c/w) 256 165 98 ma maximum lfcsp ( ja = 48.7c/w) 410 235 116 ma maximum
adg1604 rev. a | page 8 of 20 absolute maximum ratings t a = 25c, unless otherwise noted. stresses above those listed under absolute maximum ratings may cause permanent damage to the device. this is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. table 6. parameter rating v dd to v ss 18 v v dd to gnd ?0.3 v to +18 v v ss to gnd +0.3 v to ?18 v analog inputs 1 v ss ? 0.3 v to v dd + 0.3 v or 30 ma, whichever occurs first digital inputs 1 gnd ? 0.3 v to v dd + 0.3 v or 30 ma, whichever occurs first peak current, s or d 1150 ma (pulsed at 1 ms, 10% duty-cycle maximum) continuous current, s or d 2 data + 15% operating temperature range industrial (y version) ?40c to +125c storage temperature range ?65c to +150c junction temperature 150c 16-lead tssop, ja thermal impedance (2-layer board) 150.4c/w 16-lead lfcsp, ja thermal impedance (4-layer board) 48.7c/w reflow soldering peak temperature, pb free 260c esd caution 1 overvoltages at in, s, or d are clamped by internal diodes. current should be limited to the maximum ratings given. 2 see table 5.
adg1604 rev. a | page 9 of 20 pin configurations and function descriptions adg1604 nc = no connect 1 2 3 4 5 6 7 en v ss s1 nc d s2 a0 14 13 12 11 10 9 8 gnd v dd s3 nc nc s4 a1 top view (not to scale) 07982-002 figure 2. 14-lead tssop pin configuration 07982-003 pin 1 indicator notes 1. nc = no connect. 2. exposed pad tied to substrate, v ss . 1v ss 2 nc 3 s1 4 s2 11 v dd 12 gnd 10 s3 9s4 5 n c 6 d 7 n c 8 n c 1 5 a 0 1 6 e n 1 4 a 1 1 3 n c top view (not to scale) adg1604 figure 3. 16-lead lfcsp pin configuration table 7. pin function descriptions pin no. nemonic description 14lead tssop 16lead lfcsp 1 15 a0 logic control input. 2 16 en active high digital input. when this pin is low, the device is disabled and all switches are off. when this pin is high, the ax logic inputs determine the on switch. 3 1 v ss most negative power supply potential. 4 3 s1 source terminal. this pi n can be an input or output. 5 4 s2 source terminal. this pi n can be an input or output. 6 6 d drain terminal. this pin can be an input or output. 7, 8, 9 2, 5, 7, 8, 13 nc no connection. 10 9 s4 source terminal. this pi n can be an input or output. 11 10 s3 source terminal. this pi n can be an input or output. 12 11 v dd most positive power supply potential. 13 12 gnd ground (0 v) reference. 14 14 a1 logic control input. n/a 17 (epad) ep (epad) exposed pad. tied to substrate, v ss . table 8. adg1604 truth table en a1 a0 s1 s2 s3 s4 0 x x off off off off 1 0 0 on off off off 1 0 1 off on off off 1 1 0 off off on off 1 1 1 off off off on
adg1604 rev. a | page 10 of 20 typical performance characteristics 0.4 0.6 0.8 1.0 1.2 1.4 ?8 ?6 ?4 ?2 0 2 4 6 8 on resistance ( ? ) v s or v d voltage (v) t a = 25c v dd = +3.3v v ss = ?3.3v v dd = +5v v ss = ?5v v dd = +8v v ss = ?8v 07982-014 figure 4. on resistance as a function of v d (v s ) for dual supply 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 2 4 6 8 10 12 14 16 on resistance ( ? ) v s or v d voltage (v) v dd = 3.3v v ss = 0v v dd = 12v v ss = 0v v dd = 5v v ss = 0v v dd = 16v v ss = 0v t a = 25c 07982-015 figure 5. on resistance as a function of v d (v s ) for single supply 0.4 0.6 0.8 1.0 1.2 1.4 ?6?4?20246 on resistance ( ? ) v s or v d voltage (v) 07982-012 t a = +125c t a = +85c t a = +25c t a = ?40c v dd =+5v v ss = ?5v figure 6. on resistance as a function of v d (v s ) for different temperatures, 5 v dual supply 0.4 0.6 0.8 1.0 1.2 1.4 024681012 on resistance ( ? ) v s or v d voltage (v) t a = +125c t a = +85c t a = +25c t a = ?40c v dd = 12v v ss = 0v 07982-010 figure 7. on resistance as a function of v d (v s ) for different temperatures, 12 v single supply 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 on resistance ( ? ) v s or v d voltage (v) t a = +125c t a = +85c t a = +25c t a = ?40c t a = +125c t a = +85c t a = +25c t a = ?40c v dd = 5v v ss = 0v 07982-013 figure 8. on resistance as a function of v d (v s ) for different temperatures, 5 v single supply 1.5 2.0 2.5 3.0 3.5 4.0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 on resistance ( ? ) v s or v d voltage (v) v dd = 3.3v v ss = 0v t a = ?40c t a = +25c t a = +85c t a = +125c 07982-006 figure 9. on resistance as a function of v d (v s ) for different temperatures, 3.3 v single supply
adg1604 rev. a | page 11 of 20 07982-033 temperature (c) ?15 ?10 ?5 0 5 10 15 leakage current (na) 0 20 40 60 80 100 120 i d (off) +, ? i d , i s (on) +, + i d (off) ?, + i s (off) +, ? i s (off) ?, + i d , i s (on) ?, ? figure 10. leakage currents as a function of temperature, 5 v dual supply 07982-032 temperature (c) leakage current (na) 0 20406080100120 i d (off) +, ? i d , i s (on) +, + i d (off) ?, + i s (off) +, ? i s (off) ?, + i d , i s (on) ?, ? ?15 ?10 ?5 0 5 10 15 20 figure 11. leakage currents as a function of temperature, 12 v single supply 07982-030 ?5 0 5 10 15 20 0 20406080100120 leakage current (na) temperature (c) i d , i s (off) +, + i d , i s (off) ?, ? i d (off) ?, + i s (off) +, ? i d (off) +, ? i s (off) ?, + figure 12. leakage currents as a function of temperature, 5 v single supply 0 7982-031 0 20406080100120 temperature (c) i d , i s (off) +, + i d , i s (off) ?, ? i d (off) ?, + i s (off) +, ? i d (off) +, ? i s (off) ?, + ?4 ?2 0 2 4 6 8 10 12 14 16 18 leakage current (na) figure 13. leakage currents as a function of temperature, 3.3 v single supply ?100 0 100 200 300 400 500 600 i dd ( a) 024681012 logic (v) i dd per channel t a = 25c i dd = +12v i ss = 0v i dd = +5v i ss = ?5v i dd = +5v i ss = 0v i dd = +3.3v i ss = 0v 07982-005 figure 14. i dd vs. logic level 0 50 100 150 200 250 300 350 ?6 ?4 ?2 0 2 4 6 8 10 12 14 charge injection (pc) v s (v) v dd = +12v v ss = 0v v dd = +5v v ss = 0v v dd = +3.3v v ss = 0v v dd = +5v v ss = ?5v 07982-009 figure 15. charge injection vs. source voltage
adg1604 rev. a | page 12 of 20 50 100 150 200 250 300 350 400 450 ?40 ?20 0 20 40 60 80 100 120 time (ns) temperature (c) 0 7982-019 v dd = +3.3v, v ss = 0v v dd = +5v, v ss = 0v v dd = +5v, v ss = ?5v v dd = +12v, v ss = 0v figure 16. t on /t off times vs. temperature ?110 ?105 ?100 ?95 ?90 ?85 ?80 ?75 ?70 ?65 ?60 ?55 ?50 ?45 ?40 ?35 ?30 ?25 ?20 ? 15 off isol a tion (db) frequency (hz) 100k 1m 10m 100m 1g 10k 1k t a = 25c v dd = +5v v ss = ?5v 07982-007 figure 17. off isol ation vs. frequency ?120 ?100 ?80 ?60 ?40 ?20 0 crosstalk (db) frequency (hz) 100k 1m 10m 100m 1g 10k 1k t a = 25c v dd = +5v v ss = ?5v 07982-018 figure 18. crosstalk vs. frequency insertion loss (db) frequency (hz) 100k 1m 10m 100m 10k 1k ?6 ?5 ?3 ?1 ?4 ?2 0 t a = 25c v dd = +5v v ss = ?5v 07982-004 figure 19. on response vs. frequency ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 0 frequency (hz) 100k 1m 10m 10k 1k t a = 25c v dd = +5v v ss = ?5v acpsrr (db) no decoupling capacitors decoupling capacitors 07982-008 figure 20. acpsrr vs. frequency 0 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 thd + n (%) frequency (hz) 15k 10k 5k 20k r l = 110 ? t a = 25c v dd = +3.3v v s = 2v p-p v dd = +5v v s = 3.5v p-p v dd = +5v v ss = ?5v v s = 5v p-p v dd = +12v v s = 5v p-p 07982-017 figure 21. thd + n vs. frequency
adg1604 rev. a | page 13 of 20 test circuits i ds sx d v s v 07982-020 figure 22. on resistance sx d v s a a v d i s (off) i d (off) 07982-021 figure 23. off leakage sx d a v d i d (on) nc nc = no connect 07982-022 figure 24. on leakage v out 50 ? network analyzer r l 50? sx d v s v dd v ss 0.1f v dd 0.1f v ss gnd 50? off isolation = 20 log v out v s 0 7982-027 figure 25. off isolation v out 50? network analyzer r l 50? sx d v s v dd v ss 0.1f v dd 0.1f v ss gnd insertion loss = 20 log v out with switch v out without switch 07982-028 figure 26. bandwidth channel-to-channel crosstalk = 20 log v out gnd s1 d s2 v out network analyzer r l 50 ? r l 50? v s v s v dd v ss 0.1f v dd 0.1f v ss 07982-029 figure 27. channel-to-channel crosstalk
adg1604 rev. a | page 14 of 20 v out r s audio precision r l 110? in v in sx d v s v p-p v dd v ss 0.1f v dd 0.1f v ss gnd 07982-034 figure 28. thd + noise v in s1 d gnd c l 35pf r l 300? v out 50% 50% 90% 90% address drive (v in ) ) v out a0 a1 s4 s3 s2 v s1 v s4 en 2.0v 0v 3v t transition t transition v dd 0.1f v ss v dd v ss 0.1f 07982-023 figure 29. address to output switching times address drive (v in ) v out v in s1 d gnd c l 35pf r l 300 ? 300 ? v out a0 a1 s4 s3 s2 v s1 en 2.0v v dd 0.1f v ss v dd v ss 0.1f t bbm 80% 80% 0v 3v 07982-024 figure 30. break-before-make time delay
adg1604 rev. a | page 15 of 20 enable drive (v in ) s1 d gnd c l 35pf r l 300 ? v out a0 a1 s4 s3 s2 v s en v dd 0.1f v ss v dd v ss 0.1f v in 300 ? t off (en) t on (en) 50% 50% 0.9v out 0.9v out output 0v 3v v out 0v 07982-025 figure 31. enable-to-output switching delay sx d v s gnd r s sw off q inj = c l v out sw off sw on sw off sw off a2a1 en v dd v ss v dd decoder v ss v out v out v in v in v out c l 1nf 0 7982-026 figure 32. charge injection
adg1604 rev. a | page 16 of 20 terminology i dd the positive supply current. i ss the negative supply current. v d (v s ) the analog voltage on terminal d and terminal s. r on the ohmic resistance between terminal d and terminal s. r flat(on) flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range. i s (off) the source leakage current with the switch off. i d (off) the drain leakage current with the switch off. i d , i s (on) the channel leakage current with the switch on. v inl the maximum input voltage for logic 0. v inh the minimum input voltage for logic 1. i inl (i inh ) the input current of the digital input. c s (off) the off switch source capacitance, which is measured with reference to ground. c d (off) the off switch drain capacitance, which is measured with reference to ground. c d , c s (on) the on switch capacitance, which is measured with reference to ground. c in the digital input capacitance. t transition the delay time between the 50% and 90% points of the digital input and switch on condition when switching from one address state to another. see figure 29 . t on (en) the delay between applying the digital control input and the output switching on. see figure 31 . t off (en) the delay between applying the digital control input and the output switching off. see figure 31 . charge injection a measure of the glitch impulse transferred from the digital input to the analog output during switching. see figure 32 . off isolation a measure of unwanted signal coupling through an off switch. see figure 25 . crosstalk a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance. see figure 27 . bandwidth the frequency at which the output is attenuated by 3 db. see figure 26 . on response the frequency response of the on switch. insertion loss the loss due to the on resistance of the switch. total harmonic distorition + noise (thd + n) the ratio of the harmonic amplitude plus noise of the signal to the fundamental. see figure 28 . ac power supply rejection ratio (acpsrr) the ratio of the amplitude of signal on the output to the amplitude of the modulation. this is a measure of the ability of the part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. the dc voltage on the device is modulated by a sine wave of 0.62 v p-p.
adg1604 rev. a | page 17 of 20 outline dimensions compliant to jedec standards mo-153-ab-1 061908-a 8 0 4.50 4.40 4.30 14 8 7 1 6.40 bsc pin 1 5.10 5.00 4.90 0.65 bsc 0.15 0.05 0.30 0.19 1.20 max 1.05 1.00 0.80 0.20 0.09 0.75 0.60 0.45 coplanarity 0.10 seating plane figure 33. 14-lead thin shrink small outline package [tssop] (ru-14) dimensions shown in millimeters compliant to jedec standards mo-220-vggc. 1 0.65 bsc 0.60 max p i n 1 i n d i c a t o r 1.95 bcs 0.50 0.40 0.30 0.25 min 3.75 bsc sq top view 12 max 0.80 max 0.65 typ seating plane pin 1 indi c ator coplanarity 0.08 1.00 0.85 0.80 0.30 0.23 0.18 0.05 max 0.02 nom 0.20 ref 4.00 bsc sq 2.65 2.50 sq 2.35 16 5 13 8 9 12 4 exposed pa d bottom view 031006-a for proper connection of the exposed pad, refer to the pin configuration and function descriptions section of this data sheet. figure 34. 16-lead lead frame chip scale package [lfcsp_vq] 4 mm 4 mm body, very thin quad (cp-16-13) dimensions shown in millimeters ordering guide model temperature range packag e description package option ADG1604BRUZ 1 ?40c to +125c 14-lead thin shrink small outline package [tssop] ru-14 ADG1604BRUZ-reel 1 ?40c to +125c 14-lead thin shrink small outline package [tssop] ru-14 ADG1604BRUZ-reel7 1 ?40c to +125c 14-lead thin shrink small outline package [tssop] ru-14 adg1604bcpz- reel 1 ?40c to +125c 16-lead lead frame chip scale package [lfcsp_vq] cp-16-13 adg1604bcpz-reel7 1 ?40c to +125c 16-lead lead frame chip scale package [lfcsp_vq] cp-16-13 1 z = rohs compliant part.
adg1604 rev. a | page 18 of 20 notes
adg1604 rev. a | page 19 of 20 notes
adg1604 rev. a | page 20 of 20 notes ?2009 analog devices, inc. all rights reserved. trademarks and registered trademarks are the prop erty of their respective owners. d07982-0-9/09(a)


▲Up To Search▲   

 
Price & Availability of ADG1604BRUZ

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X